
CET 302

Lecture #2 (8/31/04)

Chapter #2 in text

2.1 Microarchitecture of the 8088/8086 Microprocessor

Microarchitecture – internal to the processor

Figure 2-1

Prior to 8086 processors, the processors microarchitecture only performed one function at
a time.

To improve speed/performance, the 8086/8088 processors started to do “Parallel
Processing” (explain quotes)

In Fig 2-1, there are two processing units. The Execution unit (EU) and the Bus Interface
Unit (BIU)

Bus interface Unit (BIU)

The main responsibility of the BIU is to store and retrieve data as the commanded by the
EU, but it also maintains a four byte queue that is used to store the next instructions. The
BIU maintains the queue by monitors the CS and IP registers to find out where the next
instruction is stored. Intel designed the BIU in this manner, because they wanted to have
the next instruction waiting in the queue as soon as the EU completes the previous
instruction. This made the 8088 much faster than their predecessors, because the older
processors did not use a queue for the next instructions.

http://www.cs.uregina.ca/~haughian/cs250/chpt4.htm

bus
Last modified: Wednesday, February 05, 2003

(1) A collection of wires through which data is transmitted from one part of a computer to another.
You can think of a bus as a highway on which data travels within a computer. When used in reference
to personal computers, the term bus usually refers to internal bus. This is a bus that connects all the
internal computer components to the CPU and main memory. There's also an expansion bus that
enables expansion boards to access the CPU and memory.

All buses consist of two parts -- an address bus and a data bus. The data bus transfers actual data
whereas the address bus transfers information about where the data should go.

http://www.pcwebopedia.com/TERM/b/bus.html

The Execution unit (EU)

The execution unit controls everything that goes on in the processor. The EU retrieves the
machine language instruction from the Instruction queue, it then deciphers the instruction
and see that the correction action is taken. If an instruction requires external data, such as
a memory location, the EU request the data from the Bus interface unit, or the instruction
may need to use data that is being stored in one of the registers, in this case the EU makes
sure that the correct register is being used.

If the instruction requests the use of the Arithmetic and Logic unit, the EU passes the data
to the Arithmetic and Logic unit, and instruction on what operation to perform on the
data. The Arithmetic and Logic unit then passes the result of the operation back to the
EU, where it stores it, either in a memory location or a register. The EU does not do any
arithmetic or logical operations, this left up to the Arithmetic and Logic unit.

http://www.cs.uregina.ca/~haughian/cs250/chpt4.htm

Arithmetic and Logic unit (ALU)

The ALU contains circuitry that can add two numbers together, word or byte form. It also
contains circuitry that can add or subtract one to a byte or word, and shifting of bits or
rotate bits, in a word or a byte.

The ALU is also capable of doing logical operations, such as; OR, AND, NOT, and
XOR. Subtraction is done by circuitry that uses two’s complementary functions.

The ALU is also responsible for doing bit operations, such as, shifting right or left, or
rotating a byte or word. The ALU performs multiplication with a combination of
additions and shifts, division is done in a similar manner.

When the ALU finishes an operation it also responsible for setting specific bits in the flag
register, these bits are set according to the result of the operation.

http://www.cs.uregina.ca/~haughian/cs250/chpt4.htm

2.2 Software Model of the 8088/8086 Microprocessor

Figure 2-2

(Sections 2.7-2.10)

http://www.ece.msstate.edu/~reese/EE3724/lectures/x86pmodel/x86pmodel.pdf

Status Registers:

Status Flags

Control Flags

The 8088 and 8086 Microprocessors 4th ed page 46

Memory and IO Space (sec 2.3 [part] and 2.13)

The software model shows a memory space (addresses 00000h to FFFFFh) and IO Space
(0000h to ffffh)

Memory Map / IO Map (not that in the INTEL WORLD they are two separate maps [not
true in all processors)

Explain the differences between memory and IO.

Dedicated, Reserved and General-Use Memory (sec 2.6)

Fig 2-14

Addresses Description
00000-00013H Dedicated interrupts
00014-0007FH Reserved
00080-FFFEFH General use memory
FFFF0-FFFFBH Dedicated functions
FFFFC-FFFFFH Future expansion (do not

use)

The most important dedicated function is the HARDWARE RESET JUMP
INSTRUCTION found at memory location FFFF0H

Addressing (Sec 2.11)

A segment and offset describe a logical address But the 8088 processors uses physical
addresses that are 20 bits long. How does the processor create a 20 bit address when it
only has 16 bit registers (IP, Offset Registers, Seg Registers)?

Fig 2-18

Storing Values (sec 2.3 [part] 2.4)
Aligned vs Misaligned

Storing 16 bit numbers:
Address Mem

(bin)
 Mem

(hex)
0072C 11111101 FD
0072B 10101010 AA

16 bit value would be 1111110110101010 or FDAAH and the address would be 0072BH
So if you load a 16 bit register from memory location 072BH it would contain FDAAH

Data types

Unsigned Integer 8 bit value (0 - 255 dec or 0-FFh)
Unsigned Integer 16 bit (word) value (0 - 65535 or 0-FFFFh)
Unsigned Double Word value (0 - 4,294,967,295 dec or 0 - FFFFFFFFh)

Signed integer 8 bit value (+127 to – 128dec) (Stored in two’s complement)
Signed integer 16 bit value (+32767 to -32768 dec)
Signed Double word value (+2,147,483,647 to – 2147483648 dec)

Binary Coded Decimal (BCD)

The 8 bits are broken into 2 nibbles (4 bits)
Each nibble then represents 1 decimal digit (0 – 9)

ASCII

Way of storing characters into memory (see ascii table)

Many other encoding schemes for data

(we will come back to section 2.12 in a latter lecture (The Stack))

Chapter Two
HW

Pages 54-57

Questions: 7, 11, 14 (w/o aligned / misaligned), 15 (w/o aligned / misaligned), 30-33, 37,
55, 56

Additional Question: What determines the value of each of the status flags, when do
these values change?

